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Abstract-In this work. a constitutive equation for an isotropic. nonlinear viscoelastic material of
the rate type is introduced to study the nonlinear viscoelastic responses of rubber-like materials.
This constitutive equation not only predicts creep. recovery. and stress relaxation processes which
are of significant interest to engineering applications but also depicts these processes through a
simple mathematical structure. The constitutive theory of the rate type generalizes the standard
linear solid of c1assic;.1 line;1r viscoelasticity and contains the viscoelasticity of the differential type
as its sp;."Cial case. It has been found that the stress relaxation process is characterized by a universal
solution regardless of the response functions of the material. For the creep process. the only
dilTerem:e existing between the viscoelastic materials of the rate type and the differential type is the
creeping sp;.'Cd. Closed form solutions arc obtained for creep of a viscoelastic Mooney ·Rivlin
materi;11 in simple shear and a viscoelastic neo-Ilookean material in simple extension.

l. INTRODUCTION

III a rcccni study (Bcatty lind Zhou. 1(91). a viscoelastic constitutive equation of Ihe
ditli:rcntial type. a class which includes the Voigt-Kelvin solid of classical linear visco­
elasticity, was used to study the nonlinear response of the material in simple shear defor­
mation. This constitutive equation predicts the creep and recovery processes observed in
viscoelastic materials and provides analytical solutions to the tinite amplitude oscillations
of a load supported by prest retched shear mountings of viscoelastic Mooney-Rivlin
materials of the dilli:rentialtype. It has been found that the primary homogeneous prestretch
plays an important role in determination of all aspects of the mechanical response. Lack
of the stress relaxation character typical of rubber materials. however, is a major short­
coming of this theory.

It is well known that the constitutive equation of the differential type is one of the
three basic types of constitutive theories for simple materials (Truesdell and Noll. 1965).
The other two are the rate type and the integral type. The integral type theory, while being
widdy used in engineering applications, was first developed from the fact that the viscoelastic
material exhibits the property of hereditary response. That is, the prescnt state of stress
depends not only upon the present state of deform.ttion. but also upon previous Slates.
Typical ex'lmplcs include Boltzmann's theory, Leitman and risher's theory (1973) for inlini­
tesimal deformations. Green's multiple integral representation (Green and Rivlin. 1957,
1959; Green ela!., 1959), and the BKZ models (Bernstein ela!., 1963) for tinite deformations.
However, mathematical complexity is its main drawback. In this work, I shall present a
special constitutive equation of lhe rate type and explore its engineering applications in
predicting the stress relaxation process. The effects on the creep and recovery processes of
this constitutive model compared with the differential type theory will also be addressed.

An explicit form of the constitutive equation for a class of incompressible, isotropic
viscoelastic materials of the rate type will be described in Section 2. This constitutive
equation contains the differential type model established by Beatty and Zhou (1991) as its
special case and generalizes the standard linear solid of classical linear viscoelasticity. The
nonlinear theory is then applied in Section 3 to study the stress relaxation process. A
universal solution independent of the response functions of the materials is obtained. The
creep and recovery processes arc discussed in Section 4 and the results are compared with
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the solutions obtained from the differential type theory. The analysis shows that the only
difference between these two theories is the creeping speed.

2. A CONSTITUTIVE EQUATION OF THE RATE TYPE

In this section. an explicit form of the constitutive equation of the rate type will be
given. This constitutive equation contains the viscoelastic material of the differential type
as its special case and generalizes the standard linear solid ofclassical linear viscoelasticity. I
shall begin with a brief review of the kinematics ofcontinuum mechanics and the constitutive
equations of hyperelastic solid. Newtonian fluid. and viscoelastic materials of the differential
type.

2.1. Preliminaries
We consider a body in a Euclidean space of three dimensions to undergo a deformation

described by

x = xiX. t). (I)

where x and X are the respective position vectors of a typical particle of the body at an
arbitrary time t and a reference time f R • We recall the deformation gradient F. the Cauchy
Green deformation tensor 8. and the spatial velocity gradient tensor L. defined by

F = ('x(X. t) H == FF r. L = ~'I" 1
- ('X . (2)

where the superimposed dot denotes the usual material time derivative. We also recall the
stretching tensor D given by

[) = l<!.+Lr ). (3)

An isotropic and incompressible. hyperelastic solid is a material whose constitutive
equation is given by

where T is the Cauchy stress tensor and p is the undetermined pressure due to the incom­
pressibility constraint. The response functions arc given by

Dr
1/ I = 2 ~I .

G I

(5)

where I, (i = 1.2) arc the principal invariants of Band r is the strain energy function per
unit volume in the reference configuration.

A Mooney-Rivlin material is an incompressible material whose strain energy function
is a linear function of the first and the second invariants of B (Beatty. 1987). The strain

energy function for this model is given by

Gr = _.·_--[(l,-3)+et(L-3)].
2(1 +:-t) •

Hence. by (6). eqns (4) and (5) yield

(6)
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a a.G
PI = 1+%' P-I = -1+%'

G I
T = -pi + 1+,; [B-%8- ],

619

(7)

(8)

where G is the shear modulus and % is a positive material parameter, usually between 0 and
I. When % = 0, the Mooney-Rivlin model reduces to the well-known neo-Hookean model
which was obtained from statistical mechanics (Treloar, 1975). The strain energy function
and the constitutive equation for the neo-Hookean model can be written as:

PI = G, P_I = 0,

T = -pl+GB.

(9)

( 10)

(II)

The Mooney-Rivlin and the neo-Hooke::!n models will be used in the study of creep
and recovery processes in Section 4. In addition, according to Gurtin (1981), the constitutive
equation for a Newtonian fluid is given by

T = -pi +2'10, (12)

where '1 is the viscosity of the lluid. Since the Newtonian fluid is an incompressible fluid,
we h~lve 11(0) =tr 0 =O.

A constitutive equation for viscoelastic and incompressible matcri.tls of the differential
type is studied by neatty and Zhou (1991) and is given by

(13)

When '1 =0, eqn (13) yields the familiar constitutive equation for an incompressible,
isotropic elastic solid (4). By comparing (4) and (12) we realize that the constitutive equation
(13) describes the uncoupled linear viscous and nonlinear elastic response of an isotropic,
incompressible material. For brevity, we call the material described by (13) the viscoelastic
material of the differential type.

2.2. A viscuelastic cunstitutiL'e equation of the rate type
Truesdell and Noll (1965) indicate that the general constitutive equation of the rate

type for an isotropic material has a form of

(14)

where A, is the Rivlin-Ericksen tensor with AI = 20 and t, is thc ith convectcd stress ratc
with

(15)

Let us consider a special case of (14) in which q = I and r = I. Hence, eqn (14) reduces
to

t =J(T, D, B). (16)

We now consider a subclass of (16) where the response function J is a polynomial of T.
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O. and B. Particularly. we shall examine a special class of incompressible materials whose
constitutive equation (16) is in the form of

( 17)

The response functions in ( 17) carry the same meaning as those in (13). <I> I is a material
constant. When <I> I = O. eqn (17) reduces to

or

t+LTT+TL = 0

t = -eT-TL.

( 18)

( 19)

Equation (19) is a special case of the general constitutive equation for a hypoelastic
material (Truesdell and Noll. 1965. Section 99). On the other hand. if (19) holds. by eqn
( 17 l. we have either the constitutive eq uation (13) for viscoelastic material of the differential
type or rill = O. For brevity. we shall call the material described by (17) the viscoelastic
material of the rate type.

2.3. Relatiol/ to classical IiI/car l'iscoc!asticity
The linearized infinitesimal theory of (17) may be obtained through the following

relations from continuum rm:chanics. If we let F = I +G. where G is the usual infinitesimal
dcfllf1nation gradient. and recall the infinitesimal engineering strain r. = ~(G + G f). we find
hy (2) that

n = I +2r.. () = E. (20)

In deriving (20). all products of G and (; have been neglected. Hence. to the first order in
I: and I:. the constitutive equation (17) is approximakd by

(21 )

where T is now the same as the engineering stress tensor and" is another arbitrary,
ulltktermined hydrostatic pressure given by

and the shear modulus G given by

G = 1/, -1/ I·

(22)

(23)

Equation (21) shows the linear relation among the stress rate, the stress, the strain. and the
strain rate and hence is recognized as the constitutive equation for the familiar incom­
pressible standard linear solid of classical linear viscoelasticity. Hence. material of (17) is
a special kind of generalized incompressible standard linear solid for finite deformations.

3. UNIVERSAL SOLUTION FOR STRESS RELAXATION PROCESS

The stress relaxation phenomenon has been observed in all viscoelastic materials and is
characterized by the decay of stress under certain constant deformation. For viscoelastic
material of the rate type (17), it will be shown that the stress relaxation process is char­
acterized by a universal solution regardless of the response functions of the material.

To begin with the stress relaxation process. we look at the equilibrium position of (17)
which is given by
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(:!4)

where a circumflex denotes the values at equilibrium position in which all the quantities are
time-independent constants. It is clear that the stress and corresponding deformation at
equilibrium position can be determined completely by (4). the constitutive equation for
incompressible hyperelastic materials.

Stress relaxation is a decay process of decreasing stress T under constant deformation
B. Hence. the equation for the stress relaxation process is found from (17) as

t = -4>,[T - Tl, (:!5)

where the constant deformation is reflected through the constant equilibrium stress t given
by (24). Equation (25) can be written in the form of

(:!6)

with its solution given by

(27)

where T,~ is the initi.tl stress for the relaxation process.
To obtain.l physically meaningful result for the relaxing stress T.,. the m.ltcrial constant

(P I must be positive. In this case, the stress relaxation process of the viscoelastic material
of the rate type (17) starts from certain initial stress Tg. relaxes in an exponential way, and
finally approaches the equilibrium statei:, determined by the elasticity theory. This solution
is valid for all viscoelastic materials of the rate type (17). It is indepedent of the material
constants and the specific forms of the deformation and is hence a univers.t1 solution.

The universal solution (27) .llso shows the import.lnt physical information the constant
4> 1 carries. It reflects the speed of the relaxation process. Theoretically, it takes.1n infinitely
long time to reach the equilibrium state. On the other hand, the stress in question apparently
relaxes with a nonuniform speed. Most parts of the process are achieved within a relatively
short period of time. More precisely. we recall that in the viscoelasticity literature. the term
retardation time (I,) is often used as a measure of this property. The retardation time in
the present situation is defined as

I
I, == J";' (28)

By (27), the ratio (Ti~ - T;j)/(T~ - Tt,) at I = I, determines the constant retardation ratio

Tg - :'1. _ I _ - I -. 0 63"TO
j

_ T - e -.. -.
, 'I

(29)

This is a universal constant of the stress relaxation process for all viscoelastic materials of
(17). This universal constant is the same as the one obtained by Beatty .lnd Zhou (1991)
in the study of creep process of the viscoelastic Mooney-Rivlin material of differential type
in simple shear. Physically. relation (29) shows that 63.2% of the total stress relaxation
process has been accomplished by the time I = I,.

This completes the analysis of the stress relaxation process of the viscoelastic material
of the rate type. We next consider the creep and recovery processes and examine the
difference between the rate type theory and the differential type theory.
SAS 28:5-C
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4. CREEP AND RECOVERY PROCESSES OF THE VISCOELASTIC MATERIAL
OF THE RATE TYPE

We recall that creep is the growth process of deformation under constant stress to an
asymptotic or ultimate equilibrium state and recovery is a decay process marked by decreas­
ing deformation from an arbitrary state at which the stress is suddenly removed or reduced
to a lesser value. [n either case. the governing equation is obtained from (17) and is given
by

(30)

where t is the constant symmetric stress tensor. By (3), the creep or recovery equation is
reduced to

This is a first order dillcrential equation for deformation. Its solution certainly depends on
the response functions of the material. We shall examine their closed form solutions for
two cases: the creep and recovery processes of a Mooney ·Rivlin material in simple shear
and the creep and recovery processes of a neo-Hookean material in simple extension. Before
we get into the detailed analysis for each case. it is interesting to point Ollt that the creep
equation (31) may he written in the form of

(32)

where 'I'll is the instantaneous hyperclastic stress tensor corresponding to the creeping
deformation and has a form of (.t). Tensor Z is defined hy

(D)

For the following creep and recovery analysis. it is also useful to write the constitutive
equation (17) in the form of

(34)

It is clear that eqn (34) contains the constitutive equation (13) for the viscoelastic material
of the differential type as its special case. When if} I -> Yo. eqo (34) reduces to (13). Hence.
the solutions of ereep and recovery processes of the differential type theory may be ohtained
from that of the ratc type theory by letting (PI -> 00.

4.1. Creep lItlCi recoL'ery in simple shear
For simple shear deformation. we consider a rigid body of mass At on a smooth surface

making an angle 0 with the horizontal plane supported symmetrically between identical,
prestretched rubber springs of original length L and cross-sectional area A. The springs.
prest retched an amount i... are bounded to the body at one end and to rigid end supports
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Fig. I. A rigid body M supported symmetrically between identical prestretched viscoelastic rubber
shear springs.

at the other. as shown in Fig. t. We suppose that each rubber spring executes an ideal.
time-dependent simple shearing deformation of amount K(/) superimposed on the static
longitudinal stretch ..t.. Certainly. the simple shear is an ideal deformation. Though bending
will OI.'Cur with the shearing. we shull ignore the bending efTt."Ct for mathematical simplicity.
We consider an incompressible viscoelastic model characterized by (34). Hence. for the left
spring. the motion may be detined by the following rectangular Cartesian coordinate relation
for the present place (x.y.:) occupied by the particle whose place was at (X. Y. Z) initially:

x = ;.• 1,2 X + K(I)),. Y. y:::: )., Y. : =..t, 1;2Z. (35)

Let i. j ...nd k denote the usual rectangular Cartesi..n b..sis in the directions of x. y. :.
respectively. as shown in Fig. I. lienee. by (35) und (2) we tind

F:::: ;..•. li2(i® i+k ® k) +).,j ®j+ K).,i ®j.

8 ( "11<."")'10\' "'10\' 'lklO\k 1"'('10\' '10\'):::: ;'., + -i .•- I 'CI I + I ..; J 'CI J+ ;"S 'CI + 1\.;,.; I 'CI J+ J 'CI I •

8" I :::: ).,(i ® i+ k ® k) + (i.,' 2+ K2)'sH ® j- K).,(i ® j+j ® i),

I.:::: Ki®j,

D:::: 1/2K(i®j+j®i).

With the aid of the foregoing relations, we lind by (34)

T P{ '.-l K'1' . I.
II :::: - P+ I I·s + .A;) +fL I I •• - ;j;; Til,

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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(46)

(47)

(48)

The combination ofeqns (~3). (~4). and (46) genc:rates the following relation ~tween

the shear stress and the material constants '1 and (/> I :

(49)

Hence. at equilibrium state for which till terms involving the time derivative vanish, we
obtain the well-known universal relation in simple shear.

Strictly spt.·aking, /'lending will occur along with the shear deformation. In order to
obt~lin simple shc~lr deform~ltion. surface traction corresponding to 1'" has to apply to
keep the rubber spring from bending (sce Be~ltty and Zhou. 1991). However, we still have
the surface tmction-free condition of 1',1 "" O. This yields

(50)

llence. we lind

(51 )

For simpk shear deformation, the creep process is char:H:terized by growth of K(t)

under the constant stresses of 7',; == i,; and T
"

= 1'110 say. These constant stn:sses can he
executed hy the spring mass system shown in Fig. I where 2;/ T1 ~ "" Mfl sin (I and i" is
hahlllced duc to the symmetry of the springl1lass system. We expect that if the load M is
released when K = O. the: shear will increase asymptotil.:ally to ~In ultimate equilibrium st~lte

defined by i:(t) -> 0 and K(I) -- K, as f ...... "f... Hence. by (46) ~llld (51), the static equilibrium
shear ddkction K, is related to t,; and 1'" through

(52)

(53)

when.: Ii, aMI Ii I arc functions of i., and K, alone and hence arc constants indepcndent of
time f. We alsf) rcc~dlthat the recovery phenomenon is ~I decay process marked by decreasing
shear K(i} from an initially deformcd state following a sudden reduction in the "pplied
force. In particular. if the process begins from thc st:ltic st"ltc determined by (52) and
(53) and the force is redUl:ed to zero. we e.xpect that the recovery shear K(t) decreases
asymptotically from K, to zero. This will nevcr h"ppen in rc,,1 materials sincc creep is an
irreversible process. For re..tI materials, energy dissipatcs \vhile creeping. However, creep
and recovery arc slow motions :lnd this particular material is actually an clastic material
for static probkms. Hence. when the stress reduces to 7ero, the material returns to its
original undeformed statc. This is true for both simple shear and simple extension.

The governing equations for crcep and recovery can be obtained from (46). We find
for crecp
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.( I.) . 'K'p PK'1-~T" =T,~-I... ()... I--I) (54)

(55)

Th~ right-hand side of eqn (5~) is in the same form as eqn (26) obtained by Beatty and
Zhou (1991) for creep of the viscoelastic material of the differential type in simple shear.
In their work. the creep process is treated in a more general case where the simple shear
deformation is superimposed on a triaxial deformation. In the present situation. the simple
shear deformation is superimposed on a longitudinal static extension which is a special case
in the fram~ of the work by Beatty and Zhou (1991). Without considering this point. the
differential equation (55) is the same as eqn (28) obtained by Beatty and Zhou (1991) for
recovery of a viscoelastic material of the differential type in simple shear. In other words,
two materials have the same recovery response in simple shear. Hence, the recovery test
cannot distinguish one material from the other. We shall refer the detailed discussion on
the recovery process to the work by Beatty and Zhou ( 1(91) and focus our attention to the
ditference of creeping speed predicted by these two models. The difference in creeping speed
between the rate type theory and the dil1ercntial type theory is reflected through the
coetlicient i\ in (54). The solution to (5~) depends on the response functions fJ I and {/ - I'

We shall discuss this creep process for the viscoelastic Mooney-Rivlin material described

in Sel:tion 2.
Ry (7). eqn (54) for creep is n:dul:ed to

[
" A',:;'; ] dK ).,(}., +~) ..- .. ~. = (1\,-1\).
e; (I+~)/PI dl I+Ct

(56)

By I:omparing tlte results obtained by BeallY and Zhou (1\11) I) we find tltat tlte differenl:e
in creep pWl:ess between these two models is reflected by the retardation time I,. If we define

the retardation time I, to be

" 1+ Ct ).,K;1 - ..~_ .
, G ()., + :x»)., ()., + et)/P 1 '

then the dosed form solution to (56) is given by

(57)

(58)

Solution (58) is in the same form as the result obtained by Beatty and Zhou (1991) for
creep of a viscoelastic Mooney-Rivlin material of the dif1i:rential type. Hence, the only
ditfen:nce between these two theories in this case is the ret<lrd<ltion time I,. It is recognized
th<lt the IIrst term in (57) is the rewrdation time for the ditferential type theory obtained
by Reatty and Zhou (1991). Hence, the r;tte type theory contains the ditferential type theory
as a special case. Since ;." Ct, and the material constant t/J I are all positive, we conclude from
(57) that the retardation time I, for rate type m<lteri<lls is sOl<lller than that of differential
type m<lterials. In other words, the creep process of a rate type m<lteri<ll moves faster than
that of a differential type m;lteri<ll. We <llso notice from (57) that the ret;trdation time for
a rate type material depends on the st;ltic shear deflection K, while t, for a differenti<ll type
material is independent of K, (Beatty and Zhou, 1991).

It is apparent that the ratio KIK, at 1 = I" which is

KjK, = I-e- I ~ 0.632, (59)

determines the constant retardation ratio. Jn other words, 63.2% of the total creep process
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has been accomplished by the time t ::::::: tr • This constant retardation ratio has been reported
by Beatty and Zhou (1991) for the same creep process of a viscoelastic !\toonev-Rivlin
material of the differential type. We hence conclude our study on creep and recove~vof the
material in simple shear and move on to the same problem in simple extension. '

4.2. Creep and recorery in simple extension
Simple extension is a homogeneous motion. [f we let Abe the longitudinal stretch. the

deformation for incompressible material is defined by ~

x ::::::: I.X. y::::::: ).- I ~ Y. ::::,:: i. - I' ~Z.

Hence. by (2). the deform<ltion tensors are found as:

[B] d' .r" '-1 • 11 (B I) d' /""1= Jag II. - • I. • I. i. = lug \I . .. , • I.• I. i.

1(8) .; '),. I (B) '). 11" 18 I h·.'I = I.. +-1 1•• : .::::::: _4+ ,I.-. J ( ) = I. zeD) = -3I.'/4r.

TllUs. the Cauchy stress components are found by (34) and arc given as:

(60)

(61 )

(62)

(63)

(64)

(65)

(66)

Hearing in mind the stress-free lateral surface condition. we find T~,::::::: 0: hem.'C. (66) yields

(67)

and (65) reduces to

We recall that creep in simple extension is a growth process of stretch AU) under
constant stress I'll ::::::: t l I' say. [I' this constant stress is <ldded when t = O. we expect that i.
will incrcuse to the equilibrium stute defined by J:(t) ..... 0 ;'Ind i.(l) ..... ;., as I -N. By (68).
the static stretch As is related to tIl through

(69)

where PI and {i _I .1fe functions of J., alone and hence arc constants independent of time t.
The equation of creep under constant stress tIl m.lY now be obtained from (68) and (69)
and is given by

(2U,PI - p. I )()., -l, 2) - 3r((p IJ~ = - <P 1{(i.,fi 1 - p. 1)(i.y - l, 2)
I.

-(i,PI -II d(I.-i.· 2)1. (70)

Recovery is a decay process marked by decreasing stretch from an initially stretched
state following a sudden reduction in the applied force. [I' the process starts from the
equilibrium state determined by (69) and the force is reduced to zero. we shall see that the
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recovery stretch ;.(/) decreases from ;., to zero. The equation of recovery is found from (68)

as:

1. 'P P ..,-3'1··~=(/. 1- 1)(/.-1.-').
I.

(71)

The solution to (70) depends on the response functions of PI and P_I' By (10). eqn
(70) for the neo-Hookean material is reduced to

[
'1 2. ~ . - I)J d). . J • - 1 .~) . I- 3 G- ~(/., -I., dl = I. +(/., -I.., 1.- .

This equation may be written as:

where the coefficient of ;:. which is the retardation time I, in this problem. is given by

(72)

(73)

(74)

We notice that in eqn (73), material const~lOt cPl ~Ippears only in I,. We recall (34) and
realize than when (PI -> Xi, all equations of the rate type material reduce to those of the
differential type material. Hence. the first term in (74) is the retard~ltion time of the S.101e
problem for the differential type theory. Hence. by reviewing creep equation (73) we lind
that the only difl'erence between these two theories for creep in simple extension is the
retardation time In i.e. the creeping speed. Since cP, is positive. we find from (74) that the
rate type theory predicts raster creeping speed in extension ()., > I) and slower creeping
speed in compression p.. < I). The diflcrenee in creeping speed disappears when (P 1 ->X;.

We suppose that the creep or stretch ;. starts from the unstretched state under the
instantaneous stress i'". The asymptotic equilibrium stretch ..i, is then a factor of the cubic
polynomial in (73) and the initial condition for (73) is ;. = I when / = O. The closed form
solution to (73) for the given initial condition under different values of ;., is given by:

Case I: ;., > 4 1
'.1

I I (J., - ).)Ji+).,-+A.::'
= - J ; i·' ·--f In ... ---- :...-=.===::.::.=c::~

(, _I., + I., p., _ I)JA. 2 + J.,). + ;., I

3 - (J' + - J"2 -47":1)(2 - J:-~-4"-I)+_....._ ..!...•.--------=-= In ..:'" I .., - A, - I •., + I., + I., - I., , (75)
"(J'2 -.I)J'2 4'-' (.,. - ri)2 4'·1)(2 ' J)2 )-1- _I., + I., I .., - I., _I. + I., +v'" - "'., +A, - ., - 4., )

Case 2: J., = 4 11

I,

Case 3: I < A.., < 4 1iJ

_ = _ In (J., -;.)Ji+1~~
2-A-:,"""2+-;.-,..,., , 112)" - I

("., - I h"lI. + _,,'. +,.,
3)., _I J4).; I -).;().-I)

+ tan) 2 • - 1 ., • --(2).;+).,-I)J4A..,-I_A.; .,+ I., +(_+1•.,) ....

(76)

(77)
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Case 4: 0 < ;., < I

I (i. - i.,),/ I + i., + i.; 1
- :';-;-c~-~:-~T In --- --','------

.;.}., + I., (I - i.J .../ i. c+ i.). + i.,- 1

," r~---=-I--~ .
• }., _ 1 ..; 4}., - "-, (}. - I)+ ~-----~--~-~~c_= tan ;-~-~l---~~-'-----o. (78)

("l;c+; I) /4;-I_;c ".,+_}., +(_+I.,)}._I_J r.s "r•.~ r.'C

All solutions show, of course. that t = 0 when i. = I. By (73) we find that i:(O) =

(i..c - i.,- 1)tr initially. Hence, i:(O) > 0 for the case of extension 0., > I). The creeping
stretch increases from I to i.,. Similarly, for compression with i.., < I. we find i:(O) < 0 and
the creeping stretch decreases from I to ;.'. The creeping velocity;: for the entire creep
process may be found by (73) which is

.' 1(. ')("' .. . I).}. = - }.,-}. }."+".,}.+""
t,

(79)

Hence. the creeping velocity is always positive for extension. negative for compression.
At equilibrium state with i. = ;'J' we find from (79) that ;: = O. As i. approaches its
equilibrium state of ;.,. eqns (75)-(78) show that t .... "£, as expected. Hence. these solutions
describe the creep process from the initial undeformed state of i. n = I to its asymptotic
equilibriulll state of stretch i.,. These results arc demonstrated in Fig. 2 for different values
of ;.,. The retardation ratio in this case is given by (i. - I )/()., - I) when t = t,. This ratio
for selected values of i., is listed as

;., = 2.0: 99.95%.

;., = 4 1'1: 99.37%.

;., = 1.25: 97.45%,

;., = 0.5: 93.78%.

2,------=_--.....------

o I I~

Normalized time (tIt,)

Fig. 2. Creep response of a viscoelastic neo-Hookean material in simple e\tension for various values
of ultimate equilibrium stretch i.,.
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For example. for i.., = 1.25. 97.45% of the total creep process is accomplished by the time
t = t,. This list shows that when ;., increases. the creep process moves faster. On the other
hand. bearing in mind the universal retardation ratio for simple shear deformation. the
creep of simple extension moves much faster than that of simple shear.

The equation of recovery (71) for the neo-Hookean material appears in the form of

where t, is again the retardation time and is given by

'1
t, = 3 G'

(80)

(81 )

We notice that the recovery eqns (71) and (80) contain no material constant cP I' Hence. the
recovery responses of the rate type material and the differential type material are the same.
The recovery test hence cannot be used to distinguish these two materials.

We suppose that the recovery process starts from a certain initial stretch ;.,. By (80).
the velocity of the recovery process is given by

. I '1
A=-(I-k).

t,
(82)

Hence. the recovery velocity is always negative for extension, positive for compression. It
becomes zero when ;. = I, the ultimate equilibrium state for recovery process. The closed
form solutions of (80) are given by

Case I: ;., >

Case 2: ;., < I

I (A. - I)J),! + T+~I jJ I J3U. - ).)
= lin - 3 tan

t, . (' I»);' , I (2).,+1);.+().,+2)·" - A.; +)., +

t = lIn (L:-:;';'~/~'~c~:~~I:+ /~ tan 1 J3(). - ;.,)
t, (I ')j'~ 1 I 3 (2).,+I».+().,+2)'-). ....., +'.,+

(XJ)

(X4)

Both solutions describe the recovery process from ;., (as t = 0) to its asymptotic
equilibrium state of ;. = I (as t .... (0). These results arc demonstrated in Fig. 3 for diIl"crent

2.0

o 2

NonnaJized lime (1/1,>

Fig. 3. Recovery response of a viscoelastic neo·Hookean maleriill in simple extension for various
values of initiill stretch i...
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values of i.,. The retardation ratio in this case IS gIven by (J., - i.)(i., - I) as t = t,. This
ratio for selected values of i., is given by

I., = 1.0: 97.6%.

;~~ = 1.5: 96.7%.

1'1' = 0.5 : 91.3°0. (85)
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