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Abstract—In this work. a constitutive equation for an isotropic. nonlinear viscoelastic material of
the rate type is introduced to study the nonlinear viscoclastic responses of rubber-like materials.
This constitutive equation not only predicts creep, recovery. and stress relaxation processes which
are of significant interest to engineering applications but also depicts these processes through a
simple mathematical structure. The constitutive theory of the rate type generalizes the standard
linear solid of classical linear viscoelasticity and contains the viscoelasticity of the differential type
as its special case. It has been found that the stress refaxation process is characterized by a universal
solution regardless of the response functions of the material. For the creep process. the only
difference existing between the viscoelastic materials of the rate type and the differential type is the
creeping speed. Closed form solutions are obtained for creep of a viscoclastic Mooney -Rivlin
material in simple shear and a viscoelastic neo-Hookean material in simple extension.

. INTRODUCTION

In a recent study (Beatty and Zhou, 1991), a viscoclastic constitutive equation of the
ditferential type, a class which includes the Voigt-Kelvin solid of classical lincar visco-
clasticity, was used to study the nonlinear response of the material in simple shear defor-
mation. This constitutive equation predicts the creep and recovery processes observed in
viscoclastic matertals and provides analytical solutions to the finite amplitude oscillations
of a load supported by prestretched shear mountings of viscoelastic Mooney~-Rivlin
materials of the differential type. It has been found that the primary homogencous prestretch
plays an important role in determination of all aspects of the mechanical response. Lack
of the stress reluxation character typical of rubber materials, however, is a major short-
coming of this theory.

It is well known that the constitutive equation of the differential type is one of the
three basic types of constitutive theories for simple materials (Truesdell and Noll, 1965).
The other two are the rate type and the integral type. The integral type theory, while being
widely used in engineering applications, was first developed from the fact that the viscoelastic
material exhibits the property of hereditary response. That is, the present state of stress
depends not only upon the present state of deformation, but also upon previous states.
Typical examples inciude Boltzmann's theory, Leitman and Fisher's theory (1973) for infini-
tesimal deformations, Green's multiple integral representation (Green and Rivlin, 1957,
1959 ; Green ¢t al., 1959), and the BKZ modecls (Bernstein ef al., 1963) for finite deformations.
However, mathematical complexity is its main drawback. In this work, I shall present a
special constitutive equation of the rate type and explore its enginecring applications in
predicting the stress reluxation process. The effects on the creep and recovery processes of
this constitutive model compared with the differential type theory will also be addressed.

An explicit form of the constitutive equation for a class of incompressible, isotropic
viscoelastic materials of the rate type will be described in Section 2. This constitutive
cquation contains the differential type model established by Beatty and Zhou (1991) as its
special case and generalizes the standard lincar solid of classical linear viscoelasticity. The
nonlincar theory is then applied in Section 3 to study the stress relaxation process. A
universal solution independent of the response functions of the materials is obtained. The
creep and recovery processes are discussed in Section 4 and the results are compared with
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the solutions obtained from the differential type theory. The analysis shows that the only
difference between these two theories is the creeping speed.

2. A CONSTITUTIVE EQUATION OF THE RATE TYPE

In this section, an explicit form of the constitutive equation of the rate type will be
given. This constitutive equation contains the viscoelastic material of the differenuial type
as its special case and generalizes the standard linear solid of classical linear viscoelasticity. |
shall begin with a brief review of the kinematics of continuum mechanics and the constitutive
equations of hyperelastic solid, Newtonian fluid. and viscoetastic materials of the differential
type.

2.1, Preliminaries
We consider a body in a Euclidean space of three dimensions to undergo a deformation
described by

x = x(X. 1), (hH

where x and X are the respective position vectors of a typical particle of the body at an
arbitrary time f and a reference time 1. We recall the deformation gradient F, the Cauchy
Green deformation tensor B, and the spatial velocity gradient tensor L. defined by

_Ox(X,n)

B=FF', L=FF" 2
ax (2)

¥

where the superimposed dot denotes the usual material time derivative. We also recall the
stretching tensor D given by

D= YL+L"). (3

An isotropic and incompressible, hyperelastic solid is a material whose consttutive
equation is given by

T=—pl+fB+p_ B (+)

where T is the Cauchy stress tensor and p is the undetermined pressure due to the incom-
pressibility constraint. The response functions arc given by

3 3
¢z , (,AZ (5)

=2 = -2 \
/;' ~0[“ /;—l 0/1

where 7, (i = 1.2) are the principal invariants of B and I is the strain energy function per
unit volume in the reference configuration.

A Mooney-Rivlin material is an incompressible material whose strain cnergy function
is a linear function of the first and the sccond invariants of B (Bcatty. 1987). The strain
encrgy function for this modecl is given by

(1 =3) (=) ()

z =§(l+1)

Hence. by (6). eqns (4) and (5) yield
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G aG
b=z P M
G -1
T= —pl+ m[B—iB 1 ®

where G is the shear modulus and « is a positive material parameter, usually between 0 and
1. When = = 0, the Mooney-Rivlin model reduces to the well-known neo-Hookean model
which was obtained from statistical mechanics (Treloar, 1975). The strain energy function
and the constitutive equation for the neo-Hookean model can be written as:

G
==§(11—3). 9
ﬁ|=G,- B—|=0v (lO)
T= —pl+GB. )

The Mooney-Rivlin and the neo-Hookean models will be used in the study of creep
and recovery processes in Section 4. In addition, according to Gurtin (1981), the constitutive
equation for a Newtonian fluid is given by

T=—~pl+2D, (12)
where 5 is the viscosity of the fluid. Since the Newtonian fluid is an incompressible fluid,
wehave [,(D) =tr D =0.

A constitutive equation for viscoclastic and incompressible materials of the differential
type is studied by Beatty and Zhou (1991) and is given by

T=—pl+f,B+f_B ' +24D. (13)

When g4 =0, eqn (13) yields the familiar constitutive equation for an incompressible,

isotropic clastic solid (4). By comparing (4) and (12) we realize that the constitutive equation

(13) describes the uncoupled linear viscous and nonlinear elastic response of an isotropic,

incompressible material. For brevity, we call the material described by (13) the viscoelastic
material of the ditferential type.

2.2. A viscoelastic constitutive equation of the rate type
Truesdell and Noll (1965) indicate that the general constitutive equation of the rate
type for an isotropic material has a form of

t, =2t T, ;ALAL.. . A B), (14)

where A, is the Rivlin-Ericksen tensor with A, = 2D and 'f‘, is the ith convected stress rate
with

T, =T=1T+L"T+TL. (15)

Let us consider a special case of (14) in which ¢ = | and r = 1. Hence, eqn (14) reduces
to

T =s(T.D,B). (16)

We now consider a subclass of (16) where the response function # is a polynomial of T,
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D. and B. Particularly. we shall examine a special class of incompressible materials whose
constitutive equation (16) is in the form of

T+L'T+TL= —¢,[T—(-pl+8,B+5_,B '+21D)]. (17)

The response functions in (17) carry the same meaning as those in (13). ¢, is a material
constant, When ¢, = 0. eqn (17) reduces to

T+L'T+TL=0 (18)
or

T=-L'T-TL (19)

Equation (19} 1s a special case of the general constitutive equation for a hypoelastic
material (Truesdell and Noll, 1965, Section 99). On the other hand. if (19) holds. by eqn
(17). we have either the constitutive equation (13) for viscoclastic material of the differential
tvpe or ¢, = 0. For brevity. we shall call the material described by (17) the viscoelastic
material of the rate type.

2.3, Relation to classical linear viscoclasticity

The lincarized infinitestmal theory of (17) may be obtained through the following
relations from continuum mechanies, If we let F = 1+ G, where G is the usual infinitesimal
deformation gradient, and recall the infinitesimal engincering strain & = H{G +G”), we find
by (2) that

B=1+2 D=2¢ (20)

In deriving (20). all products of G and G have been neglected. Hence, to the first order in
£ and £ the constitutive equation (17) 1s approximated by

T+, T = ¢ (—pl +2Ge+248), Qn

where T is now the same as the engincering stress tensor and p is another arbitrary,
undetermined hydrostatic pressure given by

p=p=(fi+fh) (22)
and the shear modulus G given by
G=f - (23)

Fquation (21) shows the linear relation among the stress rate, the stress, the strain, and the
strain rate and hencee is recognized as the constitutive equation for the familiar incom-
pressible standard linear solid of classical lincar viscoelasticity. Hence, material of (17) is
a special kind of gencralized incompressible standard linear solid for finite deformations.

3. UNIVERSAL SOLUTION FOR STRESS RELAXATION PROCESS

The stress relaxation phenomenon has been observed in all viscoclastic materials and is
characterized by the decay of stress under certain constant deformation. For viscoelastic
material of the rate type (17). it will be shown that the stress relaxation process is char-
acterized by a universal solution regardless of the response functions of the material.

To begin with the stress relaxation process, we look at the equilibrium position of (17)
which is given by
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T=-p1+5B+f_ B (%)

where a circumflex denotes the values at equilibrium position in which all the quantities are
time-independent constants. It is clear that the stress and corresponding deformation at
equilibrium position can be determined completely by (4). the constitutive equation for

incompressible hyperelastic materials.
Stress relaxation is a decay process of decreasing stress T under constant deformation
B. Hence, the equation for the stress relaxation process is found from (17) as

T=—¢,[T-T (25)

where the constant deformation is reflected through the constant equilibrium stress T given
by (24). Equation (25) can be written in the form of

dT,,

5= —ll,-1)] (26)

with its solution given by
Ty =T, +(T)-TJe " &2)

where T is the initial stress for the relaxation process.

To obtain a physically meaningful result for the relaxing stress 7. the material constant
¢, must be positive. In this case, the stress relaxation process of the viscoclastic material
of the rate type (17) starts from certain initial stress 77, relaxes in an exponential way, and
finally approaches the equilibrium state T, determined by the elasticity theory. This solution
is valid for all viscoclastic materials of the rate type (17). It is indepedent of the material
constants and the specific forms of the deformation and is hence a universal solution.

The untversal solution (27) also shows the important physical information the constant
¢, carries. It reflects the speed of the relaxation process. Theoretically, it takes an infinitely
long time to reach the equilibrium state. On the other hand, the stress in question apparently
relaxes with a nonuniform speed. Most pitrts of the process are achieved within a relatively
short period of time. More preciscly, we recall that in the viscoelasticity literature, the term
retardation time (¢,) is often used as a measure of this property. The retardation time in
the present situation is defined as

! = Z (28)

By (27), the ratio (T~ T,,)/(T} = T,,) at t = ¢, determines the constant retardation ratio

TS-—T, 1
- = l—e"! 2 0.632. 2
3"77;‘ l—e 0.63 (29)

This is a universal constant of the stress relaxation process for all viscoclastic materials of
(17). This universal constant is the same as the one obtaincd by Beatty and Zhou (1991)
in the study of creep process of the viscoelastic Mooncy-Rivlin material of differential type
in simple shear. Physically, relation (29) shows that 63.2% of the total stress relaxation
process has been accomplished by the time ¢ = ¢,.

This completes the analysis of the stress relaxation process of the viscoelastic material
of the rate type. We next consider the creep and recovery processes and examine the
difference between the rate type theory and the differential type theory.

SAS 28:3-G
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4. CREEP AND RECOVERY PROCESSES OF THE VISCOELASTIC MATERIAL
OF THE RATE TYPE

We recall that creep is the growth process of deformation under constant stress to an
asymptotic or ultimate equilibrium state and recovery is a decay process marked by decreas-
ing deformation from an arbitrary state at which the stress is suddenly removed or reduced
to a lesser value. In either case. the governing equation is obtained from (17) and is given

by
L'T+TL = —~o [T —(—pl+B,B+p B '+29D)]. (30)

where T is the constant symmetric stress tensor. By (3). the creep or recovery equation is
reduced to

(T—=pmDL+L(T=pin) = =, [T~ (=pl+FB+p BN 3

This is a first order differential equation for deformation. 1ts solution certainly depends on
the response functions of the material. We shall examine their closed form solutions for
two cases : the creep and recovery processes of a Mooney-Rivlin material in simple shear
and the creep and recovery processes of a nco-Hookean material insimple extension, Before
we get into the detailed analysis for each case, it is interesting to point out that the creep
cquation (31) may be written in the form of

T+70 = <, [T =T, (32)

where Ty, 1s the instantancous hyperclastic stress tensor corresponding to the creeping
deformation and has a form of (4). Tensor Z is defined by

Z=(T=p )l (33)

For the following creep and recovery analysis, it is also useful to write the constitutive
equation (17) in the form of

b ‘
T=—pt+,B+f ;B"+2'ID~4; (T+LT+TL). (34)

It is clear that eqn (34) contains the constitutive equation (13) for the viscoelastic matcerial
of the differential type as its special case. When ¢ — %, eqn (34) reduces to (13). Hence,
the solutions of creep and recovery processes of the differential type theory may be obtained
from that of the rate type theory by letting ¢ — .

4.1, Creep and recovery in simple shear

For simple shear deformation, we consider a rigid body of mass A on a smooth surface
making an angle @ with the horizontal plane supported symmetrically between identical,
prestretched rubber springs of original length L and cross-scctional area A. The springs.
prestretched an amount 4,, are bounded to the body at onc end and to rigid end supports
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Fig. [. A rigid body M supported symmetrically between identical prestretched viscoelastic rubber
shear springs.

at the other, as shown in Fig. |. We suppose that each rubber spring executes an ideal,
time-dependent simple shearing deformation of amount K{f) superimposed on the static
longitudinal stretch 4,. Certainly. the simple shear is an ideal deformation. Though bending
will occur with the shearing, we shall ignore the bending effect for mathematical simplicity.
We consider an incompressible viscoclastic model characterized by (34). Hence, for the left
spring, the motion may be detined by the following rectangular Cartesian coordinate relation
for the present place (x, v, 2) occupied by the particle whose place was at (X, Y, Z) initially :

x=4""X+KWOLY, y=4Y., =1 "Z {35)

Let i, j. and k denote the usual rectangular Cartesian basis in the direetions of x, v, =,
respectively, as shown in Fig, . Hence, by (35) and (2) we find

F=4"(iQi+k®k)+4Li®j+KALi®]. (36)
B=(L"'+K'A)i®i+Aj®j+4L 'k@k+K2(i®j+i®i), 37N
B'=A(i@i+kQ@K+(4L *+K*L)jQj-KL1i®j+j® i), (38)

L=Ki®j (39

D=I1RKIi®j+i®0), (40)

LBy = A1 +247 ' + KL 1L(B)=20,+3 7 +K%%,, L(B) =1, @1)
(D) =0, [,(D)=—1/4K> (42)

With the aid of the foregoing relations, we find by (34)

1

T, = “P+ﬂ:(3-fl+K213)+5“:;~x“‘¢ T 43)
1
2 PR ) vy l 2 .
Ty = —p+fii+f (A7 +KA) - E“(Tzz'*‘ZKle)- (44)
!
. i
Tiy==p+f i7" +B_ 1A — — Ty, (45)

¢,
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e b .
T\ =ik, —8 ‘)-*rIK—;;(T,:—?—KT,;). (46)
H
= b7
=g b (47)
[ I .
T_u == (T:»g*’!\rm}* €48)

i

The combination of eqns (43). (44). and (46) generates the following relation between

the shear stress and the material constants iy and ¢, :
|
¢

i

A HAURT )
N:i7 &,

Tiy~T. = {:T::‘“'?K+ (ﬁ:*‘xrn)} {Tn”f::“:"[\"}"‘:_}.
| )

(49)

Hence, at equilibrium state for which all terms involving the time derivative vanish, we
obtain the well-known universal relation in simple shear.

Strictly speaking, bending will occur along with the shear deformation. In order to
obtain simple shear deformation, surface traction corresponding to T, has to apply to
keep the rubber spring from bending (see Beatty and Zhou, 1991). However. we still have
the surtuce traction-free condition of 7'\, = 0. This yiclds

pm i A (50)

Hencee, we lind

g P ‘ g
Inﬁﬁgi\'lﬂ:"‘lﬁ‘ f“. (5!)

For simiple shear deformation, the ereep process is characterized by growth of K(r)
under the constant stresses of 7', = T and 7, = T, say. These constant stresses can be
exceuted by the spring muss system shown in Fig. | where 24T, = My sin 0 and T, is
bulunced due to the symmetry of the spring -mass system. We expeet that if the load M is
released when K = 0, the shear will increase asymptotically to an ultimate equilibrium state
defined by K(1) —» 0 and K(1) — K, as r — 7. Henee, by (46) and (31, the static equilibrium
shear deflection K, is related to 7' and T, through

Ty =i Knf - ol (52)
T o= fi K275 (53)

where ff, and f§ | are functions of 4, and K, alone and hence are constants independent of
time 2. We also recall that the recovery phenomenon is a decay process marked by decreasing
shear K(¢) from an initially deformed state following a sudden reduction in the applied
force. In particular, if the process begins from the static state determined by (52) and
(53) and the force is reduced 1o zero, we expect that the recovery shear A(e) decreases
asymptotically from K, to zero. This will never happen in real materials since creep is an
irreversible process. For real materials, energy dissipates while creeping. However, creep
and recovery are slow motions and this particular material is actually an clastic material
for static problems. Hence, when the stress reduces to zero, the material returns to its
original undeformed state. This is truc for both simpie shear and simple extension.

The governing equations for creep and recovery can be obtained from (46). We find
for creep
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. - . . .
K(’l"‘g‘rn)=Tu:“’-.\-K("»,ﬂl_ﬂ—l) (54)
t

and for recovery

ﬂ[('= — A K(ALB,—B 1) (55)

The right-hand side of eqn (54) is in the same form as eqn (26) obtained by Beatty and
Zhou (1991) for creep of the viscoelastic material of the differential type in simple shear.
In their work. the creep process is treated in a more general case where the simple shear
deformation is superimposed on a triaxial deformation. In the present situation. the simple
shear deformation is superimposed on a longitudinal static extension which is a special case
in the frame of the work by Beatty and Zhou (1991). Without considering this point. the
differential equation (55) is the same as eqn (28) obtained by Beatty and Zhou (1991) for
recovery of a viscoelastic material of the differential type in simple shear. In other words,
two materials have the same recovery response in simple shear. Hence. the recovery test
cannot distinguish one material from the other. We shall refer the detailed discussion on
the recovery process to the work by Beatty and Zhou (1991) and focus our attention to the
difference of creeping speed predicted by these two models. The difference in creeping speed
between the rate type theory and the differcatial type theory is reflected through the
coeflicient K in (54). The solution to (54) depends on the response functions f; and f§_ .
We shall discuss this creep process for the viscoclastic Mooney-Rivlin material described
in Section 2.
By (7). eyn (54) for creep is reduced to

N K2 WK A+, . .
B B —_ B 5(
[(; (I+a)¢/»,]dl 42 (KR (56)

By comparing the results obtained by Beatty and Zhou (1991) we find that the difference
in creep process between these two models is reflected by the retardation time /.. If we define
the retardation time ¢, to be

N4 ALK}
p I e e e 57
G (A +a)i  (A+a)d, 47
then the closed form solution to (56) is given by
K=K(l—-e "), (58)

Solution (58) is in the same form as the result obtained by Beatty and Zhou (1991) for
creep of a viscoclastic Mooney-Rivlin material of the differential type. Hence, the only
difference between these two theories in this case is the retardation time ¢,. It is recognized
that the first term in (57) is the retardation time for the differential type theory obtained
by Beatty and Zhou (1991). Hence. the rate type theory contains the differential type theory
as a special case. Since 4., 2, and the material constant ¢, are all positive, we conclude from
(57) that the retardation time 1, for rate type materials is smaller than that of differential
type materials. In other words, the creep process of a rate type material moves faster than
that of a differential type material. We also notice from (57) that the retardation time for
a rate type material depends on the static shear deflection K, while ¢, for a differential type
material is independent of A, (Beatty and Zhou, 1991).

It is apparent that the ratio K/K, at ¢ = 1,, which is

K/K, = 1—¢"' 0.632, (59)

determines the constant retardation ratio. In other words, 63.2% of the total creep process
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has been accomplished by the time ¢ = ¢,. This constant retardation ratio has been reported
by Beatty and Zhou (1991) for the same creep process of a viscoelastic Moonev-Rivlin
material of the differential type. We hence conclude our study on creep and recovery of the
material in simple shear and move on to the same problem in simple extension. ’

4.2. Creep und recovery in simple extension
Simple extension is a homogeneous motion. If we let 4 be the longitudinal stretch, the
deformation for incompressible material is defined by

Xx=AYX. y=A"11Y, =12 (60)

Hence, by (2). the deformation tensors are found as:

[F] =diag {4, i""2 4", (61)
[B} =diag {A*. A7 i "}, [B~'] =diag{i " i i}, (62)
[D] = [L] = diag {44, —4/(24). — 4/(24)}, (63)

FABY = A5 42/4, L(B)=22+1/3% Ii(B)=1, [(D)= =334 (64)
Thus, the Cauchy stress components are found by (34) and are given as:

3

wpr - . » LR ! R R o)
T —p+BA°+f8 4 ‘+3a‘]/’,f:£-—(’§ (T +24/AT ) {65)
H

I S e
Tov= —p4+fiii '+ 8 ‘Aw?}/,/]f.—‘b (e = afaT ). {66)
+ 1

Bearing in mind the stress-free lateral surface condition, we find 75, = 0 hence, (66) yiclds
—p==fk = Atnifd, (67)
and {65) reduces to
T“«i-(?.i{fi.—{-(f),)ﬁ; =g AT =4 BT =R+ 3nif) {68)
We recall that creep in simple cxtension is a growth process of stretch A{(1) under
constant stress 7, = T,. say. If this constant stress is added when 7 = 0, we expect that 4
will increase to the equilibrium state defined by A4(2) — O and A{r) — 4, as 1 — . By (68),
the static stretch 4, is related to Ty, through
Too= G —F. 006 =4, (69)
where f§, and ff_, arc functions of 2, alone and hence are constants independent of time ¢.
The equation of creep under constant stress 7, may now be obtained from (68) and (69)
and is given by
. 2 " L% }: P-4 « x L
RAS=F O =2 =3b)5 = =6lGS =0 —A
~ (A =B DG—=a ) (70
Recovery is a decay process marked by decreasing stretch from an initially stretched

state following a sudden reduction in the applied force. If the process starts from the
equilibrium state determined by (69) and the force is reduced to zero. we shall see that the
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recovery stretch A(¢) decreases from 4, to zero. The equation of recovery is found from (68)
as:

—-3'l~ (B —B_D)G—=i7). an

The solution to (70) depends on the response functions of B, and f_,. By (10). eqn
(70) for the neo-Hookean material is reduced to

a2 a ., =1 AN —1
[36 dh(/., A )] dt--/. +(4; A)A—1. (72)

This equation may be written as:
—t, A=A 2D, (73)
where the coefficient of 4, which is the retardation time ¢, in this problem, is given by
=3/G =24 - 4")/o,. (74)

We notice that in egn (73). malterial constant ¢, appears only in ¢,. We recall (34) and
realize than when ¢ — 0. all equations of the rate type material reduce to those of the
differential type material. Henee, the first term in (74) is the retardation time of the same
problem for the differential type theory. Hence, by reviewing creep equation (73) we find
that the only difference between these two theories for creep in simple extension is the
retardation time 1., i.c. the creeping speed. Since ¢, is positive, we find from (74) that the
rate type theory predicts faster creeping speed in extension (4, > 1) and slower creeping
speed in compression (4, < 1). The difterence in creeping speed disappears when ¢ — 0.
We suppose that the creep of stretch 2 starts from the unstretched state under the
instantancous stress 7', ,. The asymptotic equilibrium stretch 4, is then a factor of the cubic
polynomial in (73) and the initial condition for (73) is 2 = | when ¢ = 0. The closed form
solution to (73) for the given initial condition under different values of 4, is given by ;

Case 1: 4, > 4"

t l L (1

Ny T
l, 25 +4, 4, —l)\/A nyy )+/ !

PR In = o4
2244724t (2:‘.+A‘+ Al - 4&")(2'!-). .1.;—4).,“)

(75)

Casc 2: 4, = 4%}

_ 1 (A=A) SV +4,+4" 62(A-1)

i S Lot A€
TR G i T ernaninGgr 1

!
{

Casc3: 1 < 4, <4}
VG —OJ U+, +47"
o A oA A AT
. 37, an L AT =R G=
Qi+ )4 T3] PRSTEECYIAYL

an
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Cased: 0 <4, < |

. 2 iy A A
R N R A L

All solutions show. of course, that r = 0 when 4 = 1. By (73) we find that £(0) =
(4] =47 Y/t initially. Hence. 4(0) > 0 for the case of extension (i, > 1). The creeping
stretch increases from | to 4,. Similarly, for compression with 4, < 1, we find 4(0) < 0 and
the creeping stretch decreases from | to 4,. The creeping velocity 4 for the entire creep
process may be found by (73) which is

.| , .
/= 7(i~‘,—/’.)().“+}.‘./.+/.; h. (79)

r

Hence, the creeping velocity is always positive for extension, negative for compression,
At equilibrium state with 4 =4, we find from (79) that A =0. As A approaches its
cquilibrium statc of 4,, eqns (75)—(78) show that 1 — x, as expected. Hence, these solutions
describe the creep process from the initial undeformed state of 4, = | to its asymptotic
cquilibrium state of stretch 4. These resuits are demonstrated in Fig. 2 for difterent values
of 4. The retardation ratio in this case is given by (42— 1)/(4,— 1) when ¢ = «,. This ratio
for selected values of 4, is listed as

A =20: 99.95%.,

i,o=4"" 99.37%,
Ao=1.25: 97.45%,
A, =05 93.78%.
2
Ag=2
As.4l/3
- Ag=1.25
z
§ t
&
e
2205
|
o 1 5

Normalized time (t/t,)
Fig. 2. Creep response of a viscoelastic neo-Hookean material in simple extension for various values
of ultimate equilibrium stretch 4.
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For example, for 4, = 1.25. 97.45% of the total creep process is accomplished by the time
t = .. This list shows that when 4, increases, the creep process moves faster. On the other
hand. bearing in mind the universal retardation ratio for simple shear deformation. the
creep of simple extension moves much faster than that of simple shear.

The equation of recovery (71) for the neo-Hookean material appears in the form of

—ti=Ai"=1, (80)

where 1, is again the retardation time and is given by

n
=3-. S
t 3G (81)

We notice that the recovery eqns (71) and (80) contain no material constant ¢,. Hence, the
recovery responses of the rate type material and the differential type material are the same.
The recovery test hence cannot be used to distinguish these two materials.

We suppose that the recovery process starts from a certain initial stretch 4,. By (80).
the velocity of the recovery process is given by

1=11(|—;1»‘). (82)

Hence, the recovery velocity is always negative for extension, positive for compression. It
becomes zero when 4 = 1, the ultimate equilibrium state for recovery process. The closed
form solutions of (80) arc given by

Case l: 4, > |

‘ I P NZ RN RA 34, =2

=§ln(‘ )‘/,"‘,F;*_-.‘—\/mn'l .\/(f‘ .) . (83)
L (;~_|)\/,1‘2+;“+| 3 Qi+ )i+ (A +2)

Case2: 2, < |
t l=A) /A +A+1 3 Mi—-4
= _l‘ln (_.,.f;'l§/;i_;;;::: + )/, tan’ 1 i \/ (:‘ /‘) 5 (84)
l (|_;.)\/;_‘1+;“+| 3 (24, + DA+ (1, +2)

Both solutions describe the recovery process from A, (as £ = 0) to its asymptotic
equilibrium state of 4 = | (uas 1 — o). These results are demonstrated in Fig. 3 for different

2.0
A=20
1.3 A=LS
=
€
] 1O —
A
A =05
0.5
J
0 1 2
Normalized time (th)

Fig. 3. Recovery response of a viscoclastic neo-Hookean material in simple extension for various
values of initial stretch 4,.
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values of «.. The retardation ratio in this case is given by (4, —4) (4,— 1) as t = .. This
ratio for selected values of 4, is given by

20: 97.6%.

Ac=1.5 96.7%.

Ac= 057 91.3%. (85)

]
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